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Abstract 

The widely used geometric-probabilistic formalism, which is rigorous with respect to 
nuclei impingement simulation, is shown to be essentially ambiguous for the inverse kinetic 
problem (IKP) solution. This holds true for all particular models derived within its 
framework. The nature of this ambiguity is made explicit. A partial solution of this is 
suggested, by a more detailed interpretation of the scheme through its restatement in 
mathematical terms of tessellations. 
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1. Introduction 

Broadly speaking, the ultimate aim of the inverse kinetic problem (IKP) is to 
understand and, therefore, to explain observed macroscopic regularities on a 
microscopic scale. By its nature IKP is always ambiguous. But when solid-phase 
reactions are concerned, one more problem, in addition to the numerous objective 
causes of IKP ambiguity, is that different authors have different approaches to 
macro-micro relations. Not infrequently, this gives rise to various misunderstand- 
ings, disagreements with respect to the estimation of formality, etc. Two main 
related points here seem to be the problem of diffusion and the problem of chemical 
individuality. 

When real disperse or porous systems are studied, one is normally considering 
diffusion-controlled solid-state processes, and accordingly diffusion mechanisms are 
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implied. In this case a solid reagent is represented not as a chemical individual but 
as a “sample” characterized by its prehistory (rather than by chemical structure and 
composition) and oversimplified in the course of formalization. This determines the 
meaning attached to the word “micro” [ 11. But if we want to talk about the chemical 
regularities of solid-phase reactions alone, diffusion must be eliminated (excluding, 
of course, single-barrier activated diffusion). Now the intrinsic logic of the problem 
becomes relevant, along with considerations concerning the derivation of the 
mathematical models with which the abstract kinetic behaviour is interpreted. This 
logic determines, in particular, the choice of a single crystal face to play the role of 
the chemical individual [2] and thus the meaning of the term “micro”. (See also ref. 
2 for a discussion on the definition of meaningful simulation versus formal 
approximation.) 

And in this context, the geometric-probabilistic formalism, derived from the 
classical works of Johanson and Mehl [ 31, Kolmogorov [4], and Avrami [ 51, occupies, 
in the author’s opinion, a more important place in the modern logical framework 
of heterogeneous chemical kinetics than is commonly believed. 

2. Geometric-probabilistic formalism as a scheme 

It is noteworthy that modern geometri&probabilistic formalism, now completely 
separate from chemistry, is partly of chemical origin. In examining the thermal 
decomposition of solids it was noted that whatever the chemical nature of a reaction, 
the corresponding kinetic a(t) curve is practically always sigmoid, i.e. the only type 
of kinetic curve corresponds to various types of chemical interactions. In addition, 
a(t) curves obtained for different reactions may be quite similar, whereas tx(t) curves 
obtained for similar reactions may be quite different [6]. This has led to the idea that 
some universal geometrical regularities are superimposed on the chemical regularities 
and mask them, thus determining the shape and similarity of the a(t) curves. 

In this way the concepts of nuclei formation and growth, borrowed from biology 
by MacDonald and Hinshelwood [7], have become the basic concepts of heteroge- 
neous kinetics. The central problem in formalizing these concepts is connected with 
an accounting of the nuclei impingements. Its solution in refs. 3-5 gave birth to the 
discussed geometric-probabilistic formalism. It should be noted that refs. 3-5 
themselves are devoted to phase transitions (crystallization of steel melt) and assume 
no chemical transformations. 

This mathematical formalism, which has been widely discussed in the literature 
from various viewpoints [ 8- 131, describes the origination and evolution of the 
boundary between two phases in terms of the origin, growth and impingement of 
nuclei, without discussing the causes and nature of the corresponding nucleation and 
growth processes. By using the word “scheme” we will emphasize that this formalism 
is free from both chemistry and physics, admitting various physical and chemical 
interpretations. 

In this context, what is the interrelation between this scheme and the numerous 
particular models now in use in heterogeneous kinetics? 
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It must be noted that practically all mathematical models are represented in terms 
of the degree of conversion c1 or the rate d, or both. In the framework of the 
geometric-probabilistic approach, these main variables acquire a definite meaning 
(see next section). And it is rarely recognized that in describing particular systems 
by means of particular models in terms of LY or oi, one either makes use of their 
geometric-probabilistic interpretation or is unconsciously influenced by this inter- 
pretation. (This is illustrated in part in section 4 below.) 

In this connection the following is worth emphasizing. The equation of a 
homogeneous elementary monomolecular reaction may be written as ci = K( 1 - CX). 
But it must be stressed that in this case GI means the extent of reaction (expressible 
in terms of concentrations) rather than the geometric-probabilistic degree of 
conversion. In particular, the above term ( 1 - cr) and the co-factor (1 - c() relating 
conventional and extended degrees of conversion (see section 4) have completely 
different meanings. Of course, in a definite sense the degree of conversion is an 
analogue of the extent of reaction in the case of more complicated heterogeneous 
systems. But it is possible to discuss the interrelation of these two quantities, 
avoiding their erroneous identification. 

Therefore, if the main variable 01 has the geometric-probabilistic meaning, the 
discussed scheme sets four requirements to particular models which were formu- 
lated explicitly in ref. 3, the impossibility of relaxing them being demonstrated 
rigorously in ref. 12. Within these requirements the discussed scheme admits various 
interpretations, and particular models now in use do not cover all possibilities. 

(i) The scheme implies that the dimension of each growing nucleus is small in 
comparison with the total reaction space. 

(ii) The scheme admits various nucleation laws, requiring only that they must be 
according to Poisson. 

(iii) The scheme admits various growth laws, requiring only that the law applied 
must be one and the same for all growing nuclei at a given instant of time. (Without 
this, the notion of a common rate for the whole system cannot be defined.) 

(iv) The scheme admits any convex form of nucleus, requiring only that this 
form must be the same for all nuclei and all nuclei must be oriented in the same 
manner. The scheme is also invariant with respect to the dimensionality of a 
nucleus, and integer dimensionality is assumed, i.e. a nucleus may be either 
two-dimensional or three dimensional. When applying the fractal approach [ 141, 
this gives rise to additional essential controversy, namely whether the fractional 
exponent of a particular model derived from experimental data is the result of the 
fractal nature of the macroscopic system, or of the approximate calculations, or 
both. 

When real, complicated systems are concerned, it is extremely hard or even 
impossible to meet simultaneously the above requirements. As a result, considerable 
effort is directed towards the set of problems succinctly characterized as “diagnostic 
limits” [ 15, 161, and the use of the epithets “empirical” and “effective” becomes 
even more frequent. 

One faces the problems of diagnostic limits in the discrimination of particular 
models. And, of course, far from all of them are connected with the discussed 
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geometric-probabilistic scheme. A priori, the numerous failures in the discrimina- 
tion of particular models may be attributed, in addition to the general philosophical 
misconception of discrimination procedures [ 171, to the essentially ambiguous 
interrelation between the mechanism and the kinetic behaviour [ 11, 181, to the 
misinterpretation of the scheme [ 121, etc. In this context the question arises: does 
the geometric-probabilistic scheme itself make a contribution to the IKP ambigu- 
ity? And, if so, what is the nature of this ambiguity and in what way may it be 
overcome? 

3. Ambiguity on the phase plane oi-a 

The inherent nature of the ambiguity of the geometric-probabilistic scheme in 
respect to the IKP solution becomes explicit when the problem is considered on the 
phase plane, rate (&)-degree of conversion (a), and rests on the fact that essentially 
different sets of growing nuclei may correspond to the same point (a, d) on the 
phase plane. This may be shown in the following way. 

In the framework of the geometric-probabilistic scheme, the set Q of growing 
and impinging nuclei is characterized by two quantities, the nucleation law L,(t) 
and the growth law L,(r, t), depending not only on the current time t but also on 
the instant of nucleus appearance r: 

where y is the form factor (for spherical nuclei, y = n), u(t) is the linear rate of 
nucleus growth, < is the integration variable, and n is the dimension [ 121. Starting 
from the advantage that the results obtained within the geometric-probabilistic 
scheme are independent of the dimension n [3, 121, we will consider for simplicity 
the formation, growth and impingement of nuclei on a plane (n = 2) all conclusions 
also being true for n = 3. 
L, and L, are two independent quantities. Accordingly, a description of the given 

set of nuclei by only the function a(t) is certainly ambiguous. It is not so obvious 
whether the pair of quantities (c(, I& determining at fixed t, a point on the phase 
plane, may provide an unambiguous description for our set Q. From the formal 
viewpoint, the unambiguity requires that no other set of nuclei Q’ may correspond 
to the same (c(, L+) point and, consequently, the system 

i 

o! = 6‘ (la) 
& =&’ (lb) 

is incompatible (superscript ’ refers to the set Q’). 
We have to examine the compatibility of the system (1). To avoid complications 

associated with nuclei impingements, it is expedient to use the notion of an 
extended degree of conversion aext, introduced in ref. 4, and to pass without loss of 
generality to sets of separate (not impinging) nuclei. The term tleXt is calculated 
under two assumptiions: (i) nuclei grow “ignoring each other”; and (ii) nuclei may 
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appear not only on the free surface but also on the surface occupied by the new 
phase. Note that the expression for the degree of conversion 

( s 

f 
cc(t) = 1 - exp - L(rK,(r, 0 dr (2) 

0 > 

may be represented as a(t) = 1 -e- Rext(r). This means that the equality (la) may be 
replaced by the corresponding equality for the extended magnitudes. Analogous 
replacement is possible for the rate 

ri(t)=o(r)xZyJji(L.(i)S:u(5)dS)drxexp(-~L.(I)L,(r,r)dr) (3) 

The second co-factor in this expression is the extended (total) length of the 
boundary of all nuclei (Z,,J; the exponential co-factor may be written with 
allowance for Eq. (2) as ( 1 - a), i.e. 

c?(t) = u(t)l,,t(t)( 1 - a) = c&,(t)( 1 - CI) (4) 

Taking into account Eq. (la), we may pass finally from the system (1) for actual 
quantities to the system 

(5) 

for the extended quantities and to an examination of the compatibility of this 
system. 

In terms of the geometric-probabilistic scheme the main variable a indicates the 
probability that an arbitrary point in the original volume (on the original surface) 
will, at the instant t, be taken up by the growing nucleus of the new phase 
appearing at some earlier instant r. In our two dimensional case this is the ratio of 
the total area occupied by new phase to the area of original surface. For the unit 
original surface, this is simply the total area of all (separate) nuclei: 
a = yrf + f + yrt, where ri is the radius of the ith nucleus. The rate is propor- 
tional (according to Eq. (3)) to the total boundary length: ci = yur, + . . + yur,, 
Thus, the possibility to replace our set Q consisting of n nuclei with radii r, , . . . , r, 
by a single nucleus with radius x is determined by the compatibility of the system 

i 

x = r, + r2 + ’ + r, 

x2 = r2 + r$ +. + r* (6) 
1 ” . 

(reduced coefficients y and u are omitted). This system is incompatible at any x, and 
the replacement is impossible. 

But even in the case of two nuclei (with radii x and y) the situation is changed. 
The system 

{ 

x+y=r,+...+r, (74 
x2+y2=r:+...+r,2 0) 

is compatible at some values of x and y. And this represents the appearance of 
ambiguity. 
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Fig. 1. Graphical representations of system of Eq. (5). 

The conditions of the compatibility ma be discerned from Fig. 1. Equation (7b) 
determines the circle with radius p = + r,+...+r,onthe(x,y)plane,whereasEq. 
(7a) corresponds to the line EF cutting off the equal segments OE = OF = 
1 = r, +. . + r, on the axis. Because the inequality r, + + r, > ,,/m, 
i.e. I > p, is true for any positive ri, the line EF is always situated beyond the chord 
AB (OA = OB = p). Our system is compatible if the line EF crosses the circle. So, 
the corresponding values of x and y must fit the region between the chord AB and 
the tangent CD. Denoting the distance of EF from the origin by d, one gets for the 
lower boundary d > OC = p/J2 and for the upper boundary d < p. Finally, taking 
into account that d = l/J2, one gets p < I < 42~. 

In the case of the set Q’ consisting of three nuclei, the final inequality will be the 
same, p designating the radius of a sphere in the (x, y, z) coordinates and I 
designating the segments intersecting the axis by the corresponding plane. Whatever 
the number of nuclei in the set Q’ (more than one), the obtained conditions of 
compatibility may be represented in terms of ri as 

J~Sr,+~~~+r,<JZJ~ 

and, accordingly, in terms of the extended quantities in the 

&t<B,,t<JVLt 

JG -2yv- & 

(8) 
form of inequality 

(9) 

Taking into account the above-mentioned interpretation of extended quantities and 
comparing this inequality with the well-known isoperimetric inequality [ 191, we 
conclude that inequality (9) is satisfied. Reverting finally to the actual variables CI and 
ci we get the inequality 

J4P(l -a) 5; +&a(1 -a) (10) 
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Degree of con version 

Fig. 2. Schematic representation of the ambiguity region on the phase plane. 

which enables one to sketch (up to u and y) the region of ambiguity on the phase 
plane (Fig. 2). 

Thus, we arrive at the conclusion that essentially different sets of growing and 
impinging nuclei may correspond to the same (a, c?) point of the phase plane, and 
this means that the discussed geometric-probabilistic scheme is ambiguous with 
respect to the IKP solution. In this context some interrelations between the 
problems concerning the interpretation and discrimination of particular models, 
both conventional and generalized, become more clear. 

4. Geometric-probabilistic interpretation of particular models 

Each particular model results from the formalization of more or less detailed 
concepts concerning the reaction mechanism. Some of these details are lost during 
model derivation and simplification. On being applied for discrimination, models 
are compared in a formal rather than a conceptual respect because of the purely 
statistical nature of the discrimination procedure. The discussed ambiguity intro- 
duces additional material complications into the controversial question [ 181 as to 
which way the results of the discrimination may be interpreted in a conceptual 
respect. We will concentrate on the peculiarities of the geometric-probabilistic 
interpretation of conventional and generalized models to show that limitations in 
this interpretation represent one of the causes of the discussed ambiguity. 

4.1. Conventional models 

It is worth emphasizing again the geometric-probabilistic interpretation of the 
main variables a and d. The consequence of this is that all conceptual details of the 
mechanism which do not fall within this interpretation are represented on the stage 
of formalization by the model coefficients alone. As a result, they participate in the 
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discrimination procedure, not through the form of the function but only through 
the numerical values of the coefficients: this is obviously insufficient for non-linear 
models and has two related manifestations. 

(i) Quite different original concepts concerning the reaction mechanism may lead 
to the same equation in terms of CL For example, the well-known equation 

ln(cl/( 1 - a)) = ict (11) 

may be obtained by assuming [20] the mechanism of autocatalytic reactions; the 
chain mechanism of “outstripping” self-dispersion; the radical-chain mechanism; 
and the diffusion mechanism. A number of other similar examples may be found in 
ref. 20. 

(ii) When considered in total from some common viewpoint, models may 
acquire an interpretation different from the original one which is accompanied by 
a considerable reduction of the variation in their conceptual meaning. In terms of 
functional analysis, this was examined in ref. 21. We are interested in the geomet- 
ric-probabilistic interpretation of the models listed in Table 1, independent of the 
manner of their derivation (diffusive models are not considered). 

Note that the main co-factors of these models have the following interpretation 
in the framework of the geometric-probabilistic scheme: cx is the degree of 
conversion, the fraction of the original unit surface occupied by new phase; ( 1 - tl) 
is the fraction of the free surface. However, another interpretation of this quantity 
is no less important, 
extended magnitudes 
degree of conversion. 

i.e. it determines the interconnection between actual and 

(d4da,,, = 1 - CC) where -ln( 1 - c() z aext is the extended 

Table 1 

Mathematical models widely used in heterogeneous chemical kinetics 

kt No. d 

Acceleration 
2u”2 

3/2~1”~ 

4/3@“4 

In ci 

Sigmoid 

2( -In(l - t1))‘/* 

3(-ln(1 --u))“~ 
4( -In(l - LI))“~ 

W/( 1 - 4) 

Retardation 

2(1 -(I -a)“Z) 

3(1 -(l -G()“3) 
-ln(l -c() 

(1 -a)-’ 

(1 -a)-2 

9 k(1 -Co”* 

10 k( 1 - LX)*‘~ 

11 k(1 -u) 
12 k( 1 - c()~ 

13 k(1 -a)’ 

ka’12 
kc? 
ka3ia 
ku 

k(1 -a)(-ln(1 -u))‘/* 

k(1 -a)(-ln(l -u))~/, 
k( 1 - a)( -In( 1 - u))~/~ 

k(1 -a)a 

Power law 

Exponential law 

KEKAM 

Prout-Tompkins 

Tightened area volume 

First order 

Second order 
Third order 
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Note that Table 1 is symmetrical about its centre line: replacing IX by (1 - a) in 
Eq. Nos. (1) (2) and (4) for oi, one gets Eq. Nos. (9), ( lo), (11). Thus, it is 
reasonable to start with Eqs. (5) -(7) (the abbreviation KEKAM in the table 
represents the equations of Kolmogorov, Erofeev, Kazeev, Avrami, and Mampel). 
Taking the definitions of the co-factors mentioned above, they may be interpreted 
as follows. The co-factor ( -ln( 1 - ~1)) is the extended degree of conversion; the 
corresponding exponent gives this quantity the meaning of the extended boundary 
length; when multiplied by (1 - c() this extended magnitude is converted into an 
actual one. In other words, the rate is proportional to the boundary length with 
coefficient IC, and no further interpretation is attached to these equations within the 
geometric-probabilistic scheme. 

The same simple interpretation may be discerned for Eq. Nos. (l)-(3) (Table 1) 
in the limit of small a, when there are no impingements. Equation No. (8) may be 
treated as the less strong limit ( - ln( 1 - a)) z 01. The exponential law (Eq. No. (4)) 
in this context is the particular case of Eq. No. (8), by mathematical form as well 
as by the logic of derivation. Concerning the equations of reaction-order type (Eq. 
Nos. ( 11) -( 13)), taken from homogeneous kinetics, the corresponding exponent 
deprives the co-factor (1 - cr) of the meaning of length. This is to be expected as a 
result of the difference between concentration and o! stressed above. So, the use of 
the notion of reaction order is hardly substantiated within the geometric-proba- 
bilistic interpretation. 

4.2. Generalized models 

One of the most frequently used generalized models is the Sestak-Berggren 
model [22] 

c?=&(l-a)*[-ln(l-~a)]” (12) 

which is the product of all three co-factors mentioned above. Accordingly, from 
formal viewpoint, many models used in heterogeneous chemical kinetics are partic- 
ular cases of Eq. (12), its approximation ability being considerably greater due to 
its larger number of variables. But here we face again the “contradiction” between 
formalism and interpretation. 

(i) In the framework of the geometric-probabilistic scheme the exponents 1 and 
n must give the meaning of boundary length to the co-factors !x’ and cc:“,,. 

(ii) This length occurs twice in.Eq. (12) (calculated with and without accounting 
for nuclei impingements), but finally it may be included only once. 

(iii) Any choice of m # 1 negates the fundamental assumption of the equiproba- 
bility of nuclei formation [ 121. 

Thus, being derived from experimental data, model parameters will hardly fit 
automatically the specified “logical interval”. But if the appropriate restrictions are 
imposed on the parameters a priori, the model is no longer a generalized one. 

Comparing these considerations with the successful use of the model in thermal 
analysis kinetics [ 151, we face again the need to pass the limits of geometric-prob- 
abilistic interpretation. 
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One more example of the contradiction between formalism and interpretation will 
be given. According to ref. 23 the KEKAM equation may be represented as the linear 
combination of three different models, one of which is of diffusive type. Because of 
this, it is considered as the generalized model, being also suitable for describing 
experimental data in diffusive regimes. But in a diffusive regime the growth rate is 
not the same for all nuclei [ 121, which is in contradiction with the derivation and 
substantiation of the equation in the framework of the geometric-probabilistic 
approach. 

Therefore, in addition to being ambiguous in respect to the IKP solution, the 
geometric-probabilistic scheme does not seem to be sufficiently adapted to take into 
account the wide variety of original concepts concerning the mechanism of hetero- 
geneous chemical reactions. Consequently, with the allowance for (i) the indubitable 
advantage of the scheme as being the rigorous formalization for the important 
concepts of nuclei appearance, growth and impingement, and (ii) the impossibility 
of avoiding the ambiguity connected with the solution of the first kind of integral 
equations (like Eq. (2)), one has to think of a way of developing the scheme with 
respect to a more subtle interpretation. 

5. Geometric-probabilistic scheme in terms of coverings and in terms of tessellations 

Thus, we shall attempt a (partial) overcoming of the ambiguity of the geometric- 
probabilistic scheme by an amplification of its “interpretative ability”. The appropri- 
ate step is prompted by Eq. (4). One of two ambiguity conditions, the equality (lb), 
is satisfied under various combinations of u and I; I has a purely geometrical meaning, 
whereas v may be connected with the chemistry of a process (more concretely, with 
the single-barrier process) [ 241. This would enable one to use chemical considerations 
for solving the discussed problem. In this connection, it is essential that the 
geometric-probabilistic scheme, represented in mathematical terms of coverings, 
may be restated without loss of generality in terms of tessellations. Changing nothing 
in the formalism itself, this makes it possible to overcome the limits of conventional 
interpretation. 

The following describes how the geometric-probabilistic scheme can be repre- 
sented in mathematical terms of coverings. Imagine that one throws, at random, 
circles of various (and small enough) radii on the unit plane. Some of them may be 
partly or completely covered by others, and the totality of all the circles forms a 
covering of our unit plane (Fig. 3a). We are interested in the part of the plane 
covered, a. The contribution or of the first thrown circle to the covering is equal to 
its area: 0, = s,. According to general probability theory, the randomness of the 
throwings means that the contribution of the second circle o2 is proportional to the 
area of this circle s2 and to the fraction of free (at this stage) surface q1 = 1 - si 

a,=s,q, =s2(1 -si) 

Before the third throwing, the free area is equal to 

q2= 1 -a, -a,=(1 -s,)(l -s2) 

(13) 

(14) 
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Fig. 3. Covering (a) and tessellation (b) of a unit plane. 

and, accordingly, the contribution of the third circle to the covering is 

a,=s,q*=s,(l -s,)(l -sz) 

This is sufficient to notice the general regularity 

qn = fi C1 -si> 

i=l 

and to calculate 

a = 1 -qn = 1- h (1 -si) 
i=l 

By taking the logarithm with the following expansion 

ln(1 -cr) =Cln(l -sj) z -Csi 

and thus, taking into account the aforementioned 
quantities 

ln( 1 -a) = -aext 

and 

x = 1 _ e-%x1 

(1% 

(16) 

(17) 

into the series, one gets 

(18) 

interpretation of extended 

(19) 

(20) 
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It is worth emphasizing that the notion of rate is not used in these calculations. This 
enables one to separate the geometric-probabilistic formalism from its interpretation 
in terms of nuclei formation and growth, and to make explicit that the exponential 
form of the interrelation between actual and extended degree of conversion is the 
attribute of the formalism alone. In this or another form, the presented logic and 
calculations may be discerned in each of refs. 3, 4 and 5, which just means that the 
problem is considered in terms of coverings and that Eq. (2) may be treated in this 
context as the interpretation of Eq. (20) in terms of nuclei formation and growth, 
provided that the four aforementioned requirements are satisfied. 

In our context, the central peculiarity of the formalism of coverings is that nuclei 
impingements are taken into account at the very last stage and in a purely 
probabilistic manner, without discussing the geometric details of these impingements. 
This being a considerable advantage from the viewpoint of the direct problem, there 
is a partial loss of information from the viewpoint of the inverse problem. This 
information will be used for a more subtle interpretation of the geometric-proba- 
bilistic scheme that determines its restatement in terms of tessellations. 

Figure 3a corresponds to the well-known convenient model assumption [3] that 
a nucleus may grow through another one or even completely inside another one, a 
detailed combinatorial treatment of this being given in ref. 5. Now reverting to 
reality, the impingement of two nuclei stops their growth in the given direction 
without stopping growth in all other directions. Ultimately one will arrive at the 
picture sketched in Fig. 3b. Each cell of this picture is the “rightful domain” of a 
nucleus: it will be completely occupied by this nucleus when the process is completed. 
From the viewpoint of stochastic geometry, we are dealing with a random mosaic 
whose averaged cell is always characterized by a hexagon [ 251. With time, new nuclei 
appear along with the growth of old nuclei. As a result the “rightful domain” of each 
nucleus is reduced, and the average hexagon cell decreases with time. In this way the 
above habitual picture is placed by another formally equivalent picture: a single 
nucleus grows inside the ever-decreasing averaged hexagon cell (the central part of 
Fig. 3b); the complicated picture of nuclei impingements is represented statistically 
as the impingements with the cell edges (see also ref. 24). This model representation 
has an obvious shortcoming: using it one would have more difficulties in representing 
c1 in terms of L, and L,. But the result is known, and this enables one to make use 
of some advantages of the suggested restatement with respect to the interpretation 
of the discussed geometric-probabilistic scheme. At present, three such advantages 
will be considered. 

The process of nuclei formation acquires a spatial representation. This makes the 
scheme more homogeneous in comparison with conventional formalism, in the 
framework of which the nucleation process is treated as a purely temporal one, 
whereas nuclei growth proceeds in both time and space. 

The main variables tl and oi have a more detailed geometrical interpretation. The 
degree of conversion a is the fraction of the averaged hexagon cell occupied at the 
given instant of time by the growing nucleus. The rate oi is proportional to the 
nucleus boundary length, allowing for its impingements with the edges of the 
decreasing cell. 
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Each impingement of a nucleus with a cell edge, as well as each “filling” of a cell 
angle, results in a singular point on the o! - t curve; as many as 11 such points may 
be indicated in the general case. This provides one with essentially new possibilities 
in analysing and classifying experimental curves. (More detailed discussion will be 
given elsewhere.) 

The main advantage of the restatement is the wider possibility for interpreting the 
scheme in terms of chemistry, for example the use of planigons [27] (another variety 
of Dirichlet domains [26]) for representing the chemical individuality of a solid 
reagent. In ref. 24, the simultaneous use of planigons and random mosaics made it 
possible to define the rate of a heterogeneous chemical reaction as a measure of the 
random marked-point process. With this in mind, the further development of the 
scheme is connected with the use of planigons for taking chemical considerations 
into account. 

6. Conclusions 

Following the idea of separating, when possible, simultaneous processes [2], we 
have to agree that the geometric-probabilistic approach under discussion plays, in 
a conceptual respect, an important role in the logic of heterogeneous kinetics. In the 
present paper, this approach is shown to be essentially ambiguous with respect to 
the IKP solution and the nature of this ambiguity is made explicit. This means that 
even having created the strictly isothermal conditions, having eliminated diffusion, 
dealing with a single crystal alone (thus avoiding problems of polydispersity and 
polycrystallinity), and having satisfied, in addition, the four conditions mentioned 
above, one still does not completely eliminate the IKP ambiguity. This is obvious: 
the scheme admits various interpretations and therefore one has no grounds to 
expect unambiguity. 

Accordingly, it is logical to attempt to progress by overcoming this unambiguity 
through the proper chemical (or physical) interpretation of the scheme. It is 
impossible and unnecessary to “struggle” against the geometrical aspect of the 
problem. One has to remember that geometrical regularities only mask the chemical 
regularities. However, the former are determined by the latter. Therefore, the aim 
is to bring chemical regularities into action. Among other things, “proper” means 
that a solid reagent must be represented as a chemical individual [24]. The scope of 
the present paper is restricted to showing that the scheme admits such an interpre- 
tation and may be adapted to it in terms of random mosaics. 

The main conclusions concerning the geometric-probabilistic scheme under 
discussion may be summarized as follows. 

1. The discussed geometric-probabilistic approach results from the formaliza- 
tion of the concepts of nuclei formation, growth and impingements. In its frame- 
work, the main variables a and & have geometrical rather than chemical meanings. 

2. This formalization is rigorous with respect to the direct problem, provided 
that the four following conditions are satisfied: (i) the area of the original phase 
must be unlimited; (ii) the nuclei formation must be according to Poisson; (iii) the 
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form and orientation of all the nuclei must be the same; (iv) the rate of nucleus 
growth must be independent of the instant of its appearance. These conditions 
cannot be relaxed. 

3. In respect to the IKP, the considered scheme is essentially ambiguous. This 
introduced additional complications into the problem of discrimination. 

4. From a mathematical viewpoint, the discussed scheme may be considered as 
being represented in terms of coverings. This enables one to separate the geomet- 
ric-probabilistic formalism from its interpretation in terms of nuclei formation, 
growth and impingement. 

5. For a more detailed account of nuclei impingements, the geometric-proba- 
bilistic scheme may be restated without loss of generality in terms of random 
mosaics. The result is the possibility of representing nuclei impingements as the 
impingements of a nucleus with the edges of an averaged cell of a random mosaic, 
which is always a hexagon. 

6. The geometric-probabilistic scheme itself describes the origination and evolu- 
tion of the boundary between two phases without discussing the causes and nature 
of the corresponding nucleation and growth processes. 

7. The discussed scheme admits various chemical and physical interpretations, 
and particular models now in use do not cover all of them. The restatement in terms 
of random mosaics provides for wider possibilities in this respect, e.g. the use of 
planigons to represent the chemical individuality of a solid reagent. This is a way 
of overcoming, to a degree, the discussed ambiguity. 
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